Smart Manufacturing: opportunities and challenges Paul Clough #### About me #### **British Telecommunications** - Began working for BT as an apprentice at 16 - Electronics and software engineering #### University of Sheffield - Started in Department of Computer Science and joined iSchool in 2001 - Professor in Search & Analytics #### **Peak Indicators** - Joined Peak in 2018 - Head of Data Science #### Areas of interest - Information Access and Retrieval - Reuse, fabrication and falsification - Data Science https://scholar.google.com/citations?hl=en&user=YF03sCUAAAAJ #### **Outline** - The data revolution - Smart Manufacturing - Building blocks - Data generation and capture - · From sensors to business value - Beyond the physical world - Opportunities and challenges Due: August 26, 2021 Co-author: Jon Stammers Capabilities **Facilities** Sectors Work with us We have 11 core capabilities: - Machining - Integrated manufacturing - Composite Manufacturing - Castings - Design & prototyping - Structural testing - Medical - Additive Manufacturing - Microscopy - Metrology - Manufacturing Intelligence #### About The University of Sheffield Advanced Manufacturing Research Centre (AMRC) is a network of world-leading research and innovation centres working with manufacturing companies of any size from around the globe. #### About Background > Key People > Case Studies > Registrations & Accreditations > Current Vacancies > Publications > STEM Education > Equality, Diversity and Inclusion > https://www.amrc.co.uk/ #### The 'data revolution' Traditionally, data has been a scarce commodity which, given its value, has been either jealously guarded or expensively traded. In recent years, technological developments and political lobbying have turned this position on its head. Data now flow as a deep and wide torrent, are low in cost and supported by robust infrastructures, and are increasingly open and accessible. A data revolution is underway, one that is already reshaping how knowledge is produced, business conducted, and governance enacted, as well as raising many questions concerning surveillance, privacy, security, profiling, social sorting, and intellectual property rights. https://thedatarevolutionbook.wordpress.com/ The positive impact of IDTs on the UK economy over the next decade could be as high as £455 billion for UK manufacturing,³ increasing manufacturing sector growth between 1.5 and 3 percent per annum.⁴ The effect: a conservative estimated net gain of 175,000 jobs⁵ throughout the economy and a reduction in CO2 emissions by 4.5 percent.⁶ Overall, from the data and evidence collated, we are confident that IDTs can improve industrial productivity by more than 25 percent. *Industrial Digital Technologies (IDTs) # Seizing the data opportunity A strategy for UK data capability ### Cyber-physical systems Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1-2), 508-517. - Manufacturers focusing on integration of physical assets with digital/cyberspace to form cyberphysical production systems - Automation and local intelligence central to Industry 3.0 - System-wide intelligence at heart of smart manufacturing and Industry 4.0 # Part of a smart environment #### What is Manufacturing? Manufacturing refers to a large-scale production of goods that converts raw materials, parts, and components into finished merchandise using manual labor and/or machines. The finished goods can be sold directly to consumers, to other manufacturers for the production of more complex products, or to wholesalers who distribute the goods to retailers. In the US manufacturing represents 15% of its economic output, including automobiles, aerospace, machinery, telecommunications. https://www.oberlo.com/ecommerce-wiki/manufacturing Manufacturing is more than just putting parts together. It's coming up with ideas, testing principles and perfecting the engineering, as well as final assembly. #### Manufacturing process https://corporatefinanceinstitute.com/resources/knowledge/other/manufacturing/ Large-scale manufacturing uses core assets, including <u>assembly line processes</u> and sophisticated technologies for the mass production of goods. An example manufacturing process of <u>high-value components</u> (e.g. fabrication of metal components and assembly) - includes product life before and after CNC - Computerised Numerical Control (production equipment controlled by software) CMM - Coordinate Measuring Machine (inspection and testing) ## Making manufacturing smarter - In many ways, manufacturers have always been smart - 'Smart' and 'intelligent' were terms used in Industry 3.0 - Move towards datadriven smart manufacturing and Industry 4.0 https://www.sciencedirect.com/science/article/pii/S2666188820300162 How Industry 4.0 technologies are changing manufacturing Industry 4.0 is revolutionizing the way companies manufacture, improve and distribute their products. Manufacturers are integrating enabling technologies, including Internet of Things (IoT), cloud computing and analytics, and AI and machine learning into their production facilities and throughout their operations. These smart factories are equipped with advanced sensors, embedded software and robotics that collect and analyze data and allow for better decision making. Even higher value is created when data from production operations is combined with operational data from ERP, supply chain, customer service and other enterprise systems to create whole new levels of visibility and insight from previously siloed information. This technology leads to increased automation, predictive maintenance, self-optimization of process improvements and, above all, a new level of efficiencies and responsiveness to customers not previously possible. https://www.ibm.com/uk-en/topics/industry-4-0 #### IBM # What is Industry 4.0? Industry 4.0 is revolutionizing the way companies manufacture, improve and distribute their products. Manufacturers are integrating enabling technologies, including Internet of Things (IoT), cloud computing and analytics, and AI and machine learning into their production facilities and throughout their operations. These smart factories are equipped with advanced sensors, embedded software and robotics that collect and analyze data and allow for better decision making. Even higher value is created when data from production operations is combined with operational data from ERP, supply chain, customer service and other enterprise systems to create whole new levels of visibility and insight from previously siloed information. This technology leads to increased automation, predictive maintenance, self-optimization of process improvements and, above all, a new level of efficiencies and responsiveness to customers not previously possible. Developing smart factories provides an incredible opportunity for manufacturers entering the fourth industrial revolution. Analyzing the large amounts of data collected from sensors on the factory floor ensures real-time visibility of manufacturing assets and can provide tools for performing predictive maintenance in order to minimize equipment downtime. Smart manufacturing, also known as Industry 4.0, refers to the next generation manufacturing paradigm that makes use of smart sensors, cloud computing infrastructures, AI, machine learning, additive manufacturing, and/or advanced robotics to improve manufacturing productivity and cost efficiency Smart manufacturing <u>aims</u> to convert data acquired across the product lifecycle into manufacturing intelligence in order to yield positive impacts on all aspects of manufacturing. CRM: Customer Relationship Management MES: Manufacturing Execution System **ERP**: Enterprise Resource Planning **PLM**: Product Lifecycle Management # Example data-driven smart manufacturing infrastructure Journal of Manufacturing Systems Volume 48, Part C, July 2018, Pages 157-169 Data-driven smart manufacturing Fei Tao ^a △ ⊠, Qinglin Qi ^a, Ang Liu ^b, Andrew Kusiak ^c⊠ Show more ✓ how more V + Add to Mendeley & Share 55 Cite https://doi.org/10.1016/j.jmsy.2018.01.006 Get rights and content # **Building blocks** Data generation and connectivity using sensors and Industrial IoT # Industrial Internet of Things (IIoT) - IoT devices contain embedded technology allowing them to sense and interact with their surroundings - When applied to industrial systems referred to as Industrial IoT (IIoT) - Bring opportunities to capture large amounts of data about industrial systems for monitoring and control ...the network of intelligent and highly connected industrial components that are deployed to achieve high production rate with reduced operational costs through real-time monitoring, efficient management and controlling of industrial processes, assets and operational time. Computers & Electrical Engineering Volume 81, January 2020, 106522 Industrial internet of things: Recent advances, enabling technologies and open challenges ★ W.Z. Khan 🌣 ®, M.H. Rehman b Ø, H.M. Zangoti c Ø, M.K. Afzal d, N. Armi a, K. Salah e Ø An example of an IIoT system https://medium.com/@jaydev_21091/industrial-internet-of-things-74a4ffb44679 | Sensor /
measurement type | Applications in manufacturing | Frequency | |----------------------------------|---|--| | Temperature | Factory environmental conditions, machine tool structure monitoring (potential deformation), cutting tool condition, motor and drive condition, component temperature (growth, shrinkage), additive process assessment. | Typically, low (< 1Hz) High for cutting tool condition (> 1kHz) | | Humidity | Factory environmental conditions | Low (< 1 Hz) | | Power | Machine tool motor and drive monitoring, building management systems | Low for general energy usage calculations (< 1 Hz) | | | | Medium for asset health
monitoring (< 1 kHz) | | Accelerometer | Machining vibration, spindles and bearings, floor vibration | High (1 kHz - 20 kHz) | | Force and torque | Machine tool structure and fixture monitoring, conveyor system monitoring, spindle and bearing monitoring | Low to medium (1 Hz - 1 kHz) | | Encoders, proximity | Position of guideways, rotary systems, robot arms, conveyor belt tension, etc. | Medium (< 1 kHz) | | Acoustic Emission | Cutting tool condition, | Very high (>50 kHz) | | pH, composition,
particulates | Fluids condition monitoring (eg. metal working fluids for machining, fluid components in pharma and food) | Low (1 Hz or less) | | Vision systems | Part identification, quality monitoring, asset identification and location, asset attendance | N/A | #### Sensors - Sensors are devices that measure something about their surroundings - Sensor data sent to data acquisition system - Primary source of data in smart manufacturing systems - Data acquisition devices (DAQ) and data transfer protocols fundamental to sensor systems ## Machine tool health monitoring https://www.sandvik.coromant.com/ - Machine tools are core of many manufacturing systems and failure can cause both irreparable damage and significant delays - Monitoring the health of machine tools is a key activity of any smart manufacturing system - Many different sensors could be used, e.g., bearings can be monitored using vibration, force and deformation sensing - Application: ongoing monitoring and proactive maintenance activities ## Legacy devices and low-cost sensing - Many SMEs unable to adopt Industry 4.0 and IIoT due to cost and use of legacy devices - Can attach low-cost sensing systems to existing equipment to enable real-time monitoring of equipment effectiveness, machine condition, etc. - Data acquisition can be provided by low-cost devices, such as Raspberry Pi AMRC: Colchester Bantam lathe with a low-cost Industry 4.0 solution #### Smart hand tools - Although robotics increasingly used, manually operated hand tools still commonplace - Smart hand tools have elements of sensing and connectivity built in and can be combined with digital work instructions, e.g. intelligent torque wrench https://www.facom.com/uk/products/Smart-Torque-Description.html https://www.amrc.co.uk/files/doc ument/260/1548081041_WHITE_PA PER_AW.pdf ### Wireless connectivity - Further key aspect is connectivity - Many manufacturing environments still reliant on physical connection between devices, but moving towards wireless networks - WiFi limited in factories, therefore use of other technologies, such as Low-Power Wide Area Networks and 5th Generation mobile networks - 5G viewed as more future-looking option An open-access testbed to help manufacturers **unlock the potential** of 5G technology. The smart factory of **tomorrow starts today** https://5gfof.co.uk/ ## Location tracking technologies - Knowing the location of an object in a manufacturing environment can save significant time and cost - Includes location of a component or part, as well as other assets essential to the manufacturing process - Tracking technologies allow tracking at local level through to the global level #### Tracking technologies include: - Barcodes and Quick Response (QR) codes - Radio Frequency Identification (RFID) - WiFi - Bluetooth - Global Positioning System (GPS) #### RFID could be used for - Tracing raw materials and spare parts and updating inventories - Automatic production control - Production data collection and analysis - Product warehousing management within the factory https://www.hopelandrfid.com/industry-4-0-smart-manufacturing_n40 ### Standards and interoperability The IIoT era integration standards landscape (Lu et al., 2020) Lu, Y., Witherell, P., & Jones, A. (2020). Standard connections for IIoT empowered smart manufacturing. Manufacturing Letters, 26, 17-20. #### Introduction Specification About Messages & Payload Architecture & Topology Security Connectivity Implementation Guide #### What is Factory+? **Factory+** provides an open framework to standardise and simplify the way that data is extracted, transported, stored, processed, consumed and protected across a manufacturing organisation. By utilising edge-driven, containerised, and event-driven technologies, Factory+ provides the foundations for an Industry 4.0 architecture suitable for use both in a research environment and as an operational testbed/sandbox environment for partners/OEMs to de-risk their Industry 4.0 adoption and try out new technologies. #### Motivation https://factoryplus.app.amrc.co.uk/ # **Building blocks** Data management and analysis using cloud computing, Big Data and Al ## Cloud computing - Enables businesses to outsource their IT resources - Everything as a service model (laaS, PaaS, SaaS) - Benefits for smart manufacturing: - Cost-effective and dynamic access to large amounts of computing power - Almost immediate access to hardware resources without upfront capital investments - Lower barriers to innovation - Easy dynamic scaling of enterprise services - Enabling of new classes of applications and services FIGURE 1. The cloud-based manufacturing system architecture. # A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing QINGLIN QI[®] AND FEI TAO[®], (Senior Member, IEEE) School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China Corresponding author: Fei Tao (ftao@buaa.edu.cn) FIGURE 2. The hierarchy architecture for smart manufacturing based on edge computing, fog computing and cloud computing. # Fog and edge computing - Issues with cloud computing can include bottlenecks, network unavailability and latency - Fog and Edge computing can help by pushing processing and storage nearer to devices and reducing flows of data # Big data Processes Data Management Analytics Acquisition and Recording Extraction, Cleaning and Annotation Representation Analysis Interpretation Integration, Aggregation and Representation https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/ ## Big Data Analytics The performance logs from a single works machine can generate around 5 gigabytes (GB) of data per week, and a typical smart factory produces around 5 petabytes (PB) per week – that's 5 million GB https://www.techerati.com/the-stack-archive/data-centre/2018/05/14/smart-manufacturing-factory-automation/ https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/iot-azure-data-explorer https://www.aitimejournal.com/@premlatha.kr/what-is-ai-in-a-simple-way #### Artificial Intelligence The McKinsey Global Institute has found that robotics and AI technologies such as machine learning (which gives computers the ability to learn without explicit programming) have advanced to the point where it would be possible to automate at least 30 percent of activities in about 60 percent of occupations in both the United States and Germany (Breunig et al., 2017). Increasing equipment efficiency ## Predictive maintenance - Predictive Maintenance (PdM) seen as a top use case for Al as: "the impact of maintenance represents a total of 15 to 60% of the total costs of operating all manufacturing" - Allows proactive rather than reactive maintenance - Al can be used to support common maintenance tasks, such as - Fault diagnosis - Predicting mechanical failures and Remaining Useful Life (RUL) - Maintenance scheduling to support planned Equipment downtime Source: Capgemini Research Institute analysis. #### Identifying defects and quality control - Drive in manufacturing for high quality processes and products - Detecting subtle process parameters can help predict and prevent quality issues - In-line visual inspection methods commonly used - Widespread availability of highresolution cameras, coupled with powerful image recognition technology, has dramatically cut the cost of real time in-line inspection Source: Capgemini Research Institute analysis. #### Robots - Advances in mechatronics, computing and communication technologies driving modern robotics and autonomous systems - Standalone industrial robots first appeared in 1960s - Recent advances include collaborative robots ('cobots') and mobile robots / automated guided vehicles ## Building blocks Beyond the physical world ### Digital Twins A live digital coupling of the state of a physical asset or process to a virtual representation with a functional output. https://www.dhl.com/content/dam/dhl/global/core/documents/pdf/glo-core-digital-twins-in-logistics.pdf #### Extended reality - Virtual reality provides fully immersive digital environment - Augmented reality uses digital overlays of information onto the physical world - Mixed reality combination VR and AR $\underline{https://blog.thomasnet.com/augmented-reality-manufacturing}$ #### Simulation - Simulation in manufacturing can mean many things (Mourtzis, 2020) - Simulating stresses on a part design - Simulating an assembly - Simulating how the tooth of a tool interacts with the material being cut - Simulating complete product production flow in a factory - Simulating supply chain and logistics Mourtzis, D. (2020). Simulation in the design and operation of manufacturing systems: state of the art and new trends. International Journal of Production Research, 58(7), 1927-1949. Manufacturing Intelligence Case Study ### Virtual simulation of new Boeing facility based in Sheffield Off-line resource planning and optimisation becomes possible in the virtual world. The University of Sheffield Advanced Manufacturing Research Centre (AMRC) has developed a virtual simulation model of the new Boeing Sheffield facility. The model will help to validate the opportunities Boeing has to increase productivity by up to 50 per cent. As part of the Smart Factory research project, the AMRC are working on for Boeing, its Manufacturing Intelligence Group has worked closely with the Boeing team to create a virtual simulation model using Discrete Event Simulation (DES) techniques to examine the potential capabilities of their new factory and to validate opportunities for increasing productivity. The key benefits of using simulation for factory floor planning are - Optimising factory flow to improve productivity - Examine the impacts of uncertainties - Validate new technology introduction https://www.amrc.co.uk/files/document/241/1542814525_AMRC_BOEING_case_study.pdf Boeing's first production facility in Europe simulated within a DES model. A simulation model was created in Siemens Tecnomatix Plant Simulation, a discrete event simulation software package allowing events and what-if scenarios to be run without interrupting existing production systems or processes. The software is used to produce layouts of factory floors and add in data for machines, processes, production targets and materials, allowing a simulation model to be created which mimicked production flow on the new workshop floor at Boeing Sheffield. The virtual model and the factory simulation validated the impact of Boeing Sheffield's planned production processes and showed where they had spare production capacity, to assist with future optimisation of production schedules. # Opportunities and Challenges How We Help Clients Our Insights Our People Careers Contact Us Chart 11. Current transformation segments and future potential Question: Which business segments in your company have undergone the most and the least transformation as part of industry 4.0? ## Manufacturing *is* changing Question: Which business segments within your company have the greatest potential to benefit from the digital transformation to industry 4.0? #### Opportunities and challenges #### THE UK OPPORTUNITY FROM INDUSTRIAL DIGITALISATION Digital technologies are transforming industry. In a 2017 report, the World Economic Forum identified a \$100 trillion opportunity for both industry and society through the adoption of these technologies. Each day, around five million devices link up with each other, with the internet, or with both. There are around 6.4 billion data-communicating objects in the world today. And by 2020, this number is forecast to explode to around 20 billion. In summary, industrial digitalisation is a massive opportunity for UK industry – and the wider economy. But the technologies that underpin it are also highly disruptive, requiring business to be innovative, agile and adaptable. Industry and government will need to work in partnership to provide the infrastructure and ecosystems that can enable manufacturing businesses and their supply chains to maximise these opportunities and be competitive. Get it wrong, and we risk further de-industrialising our economy, and becoming ever more reliant on imports. Get it right, and we will have found the key to rebalancing and strengthening our economy, creating many new, exciting, and well-paid jobs, and leading a renaissance for the UK as a true nation of creators and makers. #### Opportunities "Manufacturing systems must be made more "smart" to achieve the all-round monitoring, simulation and optimization of production activities" Tao et al. (2018) - Smart planning and process - Smart product design - Smart equipment maintenance - Product quality control - Manufacturing process monitoring - Material distribution and tracking #### Challenges As we take stock of the progress that has been made over the past five years, we see that companies are placing big bets on data and analytics. But adapting to an era of more data-driven decision making has not always proven to be a simple proposition for people or organizations. Many are struggling to develop talent, business processes, and organizational muscle to capture real value from analytics. This is becoming a matter of urgency, since analytics prowess is increasingly the basis of industry competition, and the leaders are staking out large advantages. Meanwhile, the technology itself is taking major leaps forward—and the next generation of technologies promises to be even more disruptive. Machine learning and deep learning capabilities have an enormous variety of applications that stretch deep into sectors of the economy that have largely stayed on the sidelines thus far. #### Successful data and analytics transformation requires focusing on five elements - Clearly articulating the business need and projected impact - Outlining a clear vision of how the business would use the solution - Gathering data from internal systems and external sources - Appending key external data - Creating an analytic "sandbox" - Enhancing data (deriving new predictor variables) - Applying linear and nonlinear modeling to derive new insights - Codifying and testing heuristics across the organization (informing predictor variables) - Redesigning processes - Developing an intuitive user interface that is integrated into dayto-day workflow - Automating workflows - Building frontline and management capabilities - Proactively managing change and tracking adoption with performance indicators SOURCE: McKinsey Analytics; McKinsey Global Institute analysis Exploding quantities of data have the potential to fuel a new era of fact-based innovation in corporations, backing up new ideas with solid evidence. Buoyed by hopes of better satisfying customers, streamlining operations, and clarifying strategy, firms have for the past decade amassed data, invested in technologies, and paid handsomely for analytical talent. Yet for many companies a strong, data-driven culture remains elusive, and data are rarely the universal basis for decision making. #### Why is it so hard? Our work in a range of industries indicates that the biggest obstacles to creating data-based businesses aren't technical; they're cultural. It is simple enough to describe how to inject data into a decision-making process. It is far harder to make this normal, even automatic, for employees — a shift in mindset that presents a daunting challenge. So we've distilled 10 data commandments to help create and sustain a culture with data at its core. #### Challenges https://hbr.org/2020/02/10-steps-to-creating-a-data-driven-culture #### Challenges - being realistic Topics Magazine Newsletters Events =Q Artificial intelligence / Machine learning Al is not "magic dust" for your company, says Google's Cloud Al boss Andrew Moore says getting the technology to work in businesses is a huge challenge. by Will Knight November 8, 2018 Photo of Andrew Moore COURTESY OF ANDREW MOORE How big of a technology shift is this for businesses? It's like electrification. And it took about two or three decades for electrification to pretty much change the way the world was. Sometimes I meet very senior people with big responsibilities who have been led to believe that artificial intelligence is some kind of "magic dust" that you sprinkle on an organization and it just gets smarter. In fact, implementing artificial intelligence successfully is a slog. #### Global manufacturing challenges - Adoption of advanced manufacturing technologies - Growing importance of manufacturing of high value-added products - Utilising advanced knowledge, information management, and AI systems - Sustainable manufacturing (processes) and products - Agile and flexible enterprise capabilities and supply chains - Innovation in products, services, and processes. - Close collaboration between industry and research to adopt new technologies - New manufacturing management paradigms # Barriers to becoming data-driven Survey respondents report that strategic, leadership, and organizational hurdles often determine the degree to which they can use data and analytics effectively Which of these have been among the TOP 3 most significant challenges to your organization's pursuit of its data and analytics objectives? | High • | Moderate Low Barriers | Overall % | High
tech and
telecom | Petail | Manu-
factur-
ing | Public sector | Health
care | |--|--|-----------|---------------------------------------|--------|-------------------------|---------------|----------------| | Strategy,
leadership,
and talent | Constructing a strategy | 30 | • • • • • • • • • • • • • • • • • • • | Netall | | Sector | Care | | | Ensuring senior management involvement | 42 | | | | | | | | Securing internal leadership for data and analytics projects | 33 | | | | | | | | Attracting and/or retaining appropriate talent (both functional and technical) | 21 | | | | | | | Organi-
zational
structure
and
processes
IT infra-
structure | Tracking the business impact of data and analytics activities | 23 | | | | | | | | Designing an appropriate organizational structure to support data and analytics activities | 45 | | | | | | | | Creating flexibility in existing processes to take advantage of data-driven insights | 13 | | | | | | | | Providing business functions with access to support | 14 | | | | | | | | Investing at scale | 17 | | | | | | | | Designing effective data architecture and technology infrastructure | 36 | | | | | | #### Challenges - Acceptance and change - Integration - Security - Data infrastructure - Re-skilling "The biggest challenge of the digital transformation is going to be guaranteeing that different systems communicate with each other." Marcel Wenzin, agta record ag, Head of Supply Chain Management #### Hot topics - Legacy connectivity - Standardisation of data models - Digital twins - Upskilling the workforce - Data sharing and security - Digital passport and certification - Connected supply chain - Human, cyber, physical collaboration Engineering Science and Technology, an International Journal Volume 22, Issue 3, June 2019, Pages 899-919 Reviev Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems V. Alcácer a, c A ™, V. Cruz-Machado a, b #### Future research - Al - Deployment of AI (MLOps) - Self-supervised and transfer learning - Generating synthetic training data - Learning on smaller datasets - Explainable AI and trust - Adoption and acceptance of Al AMRC AI lead: Rikki Coles "This is nothing less than a paradigm shift in industry: the real manufacturing world is converging with the digital manufacturing world to enable organizations to digitally plan and project the entire lifecycle of products and production facilities." - Helmuth Ludwig, CEO, Siemens Industry Sector, North America. ### Thank You PEAK INDICATORS Sarika Jain San Murugesan *Editors* ### Smart Connected World Technologies and Applications Shaping the Future